
JOURNAL OF COMPUTATIONAL PHYSICS 41, 51-67 (1981) 

PIC Calculations of Multiphase FROWNS+ 

THOMAS L. COOK, RUTH B. DEMUTH, AND FRANCIS H. HARLOW 

Los Alamos ScientiJic Laboratory, Los Alamos, New Mexico 87545 

Received October 31, 1979; revised March 31, 1980 

The Particle-in-Cell method for the numerical solution of problems in fluid dynamics has 
been extended to the study of shock and rarefaction flows in a multiphase mixture. To test the 
numerical procedure, we have examined the propagation of sound signals through a mixture in 
which the theoretical speed is appreciably less than that of either material separately, with 
results that validate the calculational technique. 

I. INTRODUCTION 

Under several possible circumstances the passage of a shock across a density 
discontinuity can result in an instability of the interface followed by an inter- 
penetration between the phases. One class of problems occurs when both materials 
are in a liquid or a vapor phase and the interface between them has had some pertur- 
bation impressed upon it. Another class occurs when one material is a liquid or a gas, 
and the other is a fragmented solid. In either case, instability and penetration take 
place only when the shock moves from the less dense to the more dense material. 
When both materials are in a liquid or vapor state, the process is closely related to 
the classical Rayleigh-Taylor instability of incompressible fluids. 

When a shock passes through a liquid or a gas and impinges on a fragmented 
solid, the detailed dynamics are more complicated. The response of the solid depends 
on the extent of interpenetration by the driving gas at the contact surface. The inter- 
penetration can be understood qualitatively in terms of the relative acceleration of 
material elements near the material interface as. the shock first passes over. We 
illustrate this concept in Fig. 1. In Fig. la the shock is incident on the material 
interface from the low-density gas on the right. In Fig. lb the acceleration of the fluid 
elements is shown after the passage of the shock. The lighter fluid elements have less 
inertia and consequently are accelerated more easily by the impulse. Under certain 
conditions, which we discuss quantitatively below, interpenetration results. The 
reverse situation is presented in Figs. lc and d. The shock is incident from the left 
through the high-density material and the accelerations are in the opposite direction 
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FIG. 1. Relative acceleration of material elements as a shock first passes over. 

from those in Fig. lb. The lighter fluid elements accelerate away from the heavier 
elements, no interpenetration occurs, and the contact surface remains sharply defined. 

The methodology described below has been developed to study the problem of 
strong and weak shocks interacting with material interfaces. In particular we have 
examined the effects of shock passage across both leading and trailing edges of a 
fragmented metallic plate bounded on both sides by a gas of lighter density. The 
dynamic response of the plate depends on the severity of the instability that develops 
at the contact surface, and hence on the coupling between the two material fields. 
Details of this study are reported in Ref. [ 11. 

Previous calculations of multiphase flow have been carried out in a completely 
Eulerian system [2]. For many purposes this type of representation is sufficiently 
accurate. In the present circumstances, however, there is one particular feature of the 
multiphase flow for which our preliminary calculations with a purely Eulerian 
representation are seriously deficient. Whereas most multiphase flow studies have 
emphasized the bulk interaction between already mixed phases, our present concern 
has been with the earliest stages of mix between phases in the vicinity of an interface 
that is initially sharp. 

To illustrate the difficulty that can arise, we consider an initial configuration that 
consists of A, a region of pure gas, B, a region of fragmented metal, and C, another 
region of pure gas. The left wall is idealized as a rigid boundary, whereas the right 
wall is an inlet boundary through which a shock is introduced. 
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FIG. 2. Numerical diffusion: Macroscopic density of the metal predicted using coarse and fine 
Eulerian meshes and coarse and intermediate PICM meshes. 

In Fig. 2 we plot the macroscopic density of a metallic disc that has been impacted 
by a strong shock. The disc is surrounded by a low-density gas. The shock travels 
from the right to the left; therefore the left contact surface is physically stable and 
any smearing is the result of numerical diffusion. The plots show that a purely 
Eulerian calculation performed with a code called MUFF (Multi-Fluid Flow) suffers 
from an intolerable level of numerical diffusion, even with very strong coupling 
between the two materials. It is easy to show that the diffusion extends-over an 
effective distance that varies as the square root of the size of a computational cell. To 
reduce the diffusion to an acceptable level, however, would require cells very much 
smaller than those necessary for accurate resolution of the rest of the dynamics. To 
improve the accuracy of our solutions we have formulated a more elaborate scheme, 
based on the Particle-in-Cell (PIC) method [3]. This methodology is implemented in 
a computer code called PICM [ 1 ] (PIC Multi-phase). This new methodology allows 
the microscopic particles of the respective phases to cross over one another; hence it 
can be applied to multiphase situations where materials are interpenetrating. 

II. THE DIFFERENTIAL EQUATIONS 

The coupled differential equations and the exchange functions that describe the 
motion of a fluid composed of many materials, any one of which may be 
microscopically compressible or incompressible, are discussed in Ref. [3]. We 
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summarize below the one-dimensional, two-material, plane coordinate version of 
these equations. 

Mass: 

where f is the time; x is the coordinate; pi is the macroscopic density of material 1, 
that is, the total mass of I per unit total volume, and uI is the velocity of 1. 

Momentum : 

p; 2 + p;ulz = -8, g + v-1 + K&.4, - UJ 

The volume fraction of 1 is 19,, the change in momentum of I from the action of 
artificial viscous forces is V,, the drag function resulting from motion relative to 
material m is K1,, and the pressure is p. It is postulated that the two materials are in 
local equilibrium, so we do not subscript p. We represent V, by 

y=-a4r I ax ’ 

where qI is the artificial viscous stress. This stress is calculated by 

where vI is the kinematic viscosity of 1. The drag function [4], which controls the 
exchange of momentum between the materials, can be written in a simplified form for 
the case in which 1 is the dispersed phase (the fragmented metal) and m is the 
continuous phase (the gas). 

where C, is the drag coefficient and r, is the radius of a particle of 1. 
Energy: 

p;$+p;u,+j= (0,~ + ,,)+g +P;K,, 
(%?I - 4’ 

I P;+P:, 

(6) 
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where I, is the specific internal energy and & is the thermal conductivity. The 
equation of state of the materials completes the set. For this study we use the 
stiffened gas formulation, 

P = 4@, - PO!) + (Yr - 1) 0,. (7) 

The microscopic density, p,, is the mass of I per unit volume occupied by I, so that 
p; = 8,p,. The parameters a,, par, and y, characterize the material. 

III. NUMERICAL METHODOLOGY 

The basic procedure used in the PIC method can be qualitatively decribed in the 
following way. The spatial domain of interest is subdivided into a set of Eulerian 
computational cells. With each cell we associate such field variables as pressure, 
specific internal energy, and fluid velocity. In addition, we superimpose a Lagrangian 
set of marker particles. Each particle represents an element of fluid that moves 
through the Eulerian mesh and interacts with other elements of fluid in a procedure 
that couples the two materials together. The passage of time is divided into a 
sequence of computational cycles, each with duration 6t. After specification of initial 
and boundary conditions the evolution of the configuration through time is accom- 
plished by a prescribed set of calculational phases in each cycle. These phases can be 
summarized as follows. 

Phase 1. An advancement of the field variables for each Eulerian cell is 
calculated as if both the particles and the cells follow the fluid motion. In this phase, 
therefore, no convective terms in the equations are calculated. 

Phase 2. With the Eulerian cells returned to their original positions, the new 
particle coordinates are calculated and any resulting transport of a particle from one 
Eulerian cell to another is accompanied by calculations of the corresponding 
convection of mass, momentum, and energy. 

Phase 3. The diffusion of heat is calculated. 

The Eulerian calculational mesh and indexing scheme for a typical problem are 
shown in Fig. 3. Eulerian cell centers are identified by integers, interfaces by half- 
integers. The index j is the total number of interior cells. The indices j, and j, define 
regional interfaces. The three interior regions are initialized to contain either of two 

Region A Region B Region C 

FIG. 3. The Eulerian calculational mesh for a typical problem. 
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FIG. 4. Centering of the field variables. 

materials or mixtures thereof. The left boundary is a rigid wall. At the right boundary 
we allow particles to be fluxed into the system from the exterior boundary cell 
according to prescribed conditions. 

The Lagrangian particles are superimposed on this Eulerian mesh, their coor- 
dinates being denoted by the variable xlk. The first subscript denotes the material; for 
this particular study, I is either 1 or 2. The second subscript identifies the particle. 
The initial number of particles of I in a cell is IV,. The total number of particles of 1 
that are interior to the mesh is N,r, whereas the total number of particles of 1, 
including the particles held in reserve in the exterior boundary region, is N,,. 

As the system evolves through time, the Lagrangian particle distribution changes 
within the cells throughout the Eulerian mesh, determining the corresponding 
variations in the macroscopic fluid properties. The centering of the field variables is 
illustrated in Fig. 4. A complete set of variables must be specified for each material 
present. The first subscript identities the material; the second subscript indicates the 
location of the variable. For two variables this categorization scheme is simplified. 
Since we assume pressure equilibrium between the materials, we drop the leading 
subscript for this variable and indicate only its location in the calculational mesh. 
The coupling coefficient K for a two-material system is likewise completely specified 
by indicating location. Pressure (pj), volume fraction (19,), specific internal energy 
(Zlj), macroscopic and microscopic densities @; and pv, where p; = B,P,~), total mass 
(IV,~), total internal energy (Elj), cell volume (V,), and artificial viscous pressure (qu) 
are cell-centered quantities. Fluid velocity (uu+ &, coupling coefficient between the 
fields (Kj+ r,J, edge mass (nlj+ ,,*), and momentum (Ylj+ ,J are interface variables. 
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Such cell-wise total quantities as mass M and volume V, are actually per unit cross- 
sectional area of the one-dimensional system. Previous calculations with the PIC 
method have treated the components of fluid velocity as cell-centered quantities. In 
anticipation of the development of an implicit version (see Ref. [ 11) we have used 
cell-edge velocities in the present code. 

In specifying initial conditions we choose the macroscopic fluid variables so that 
they represent the problem of interest. Consider the case in which region A is a pure 
gas, region B is fragmented metal, and region C is the same gas as region A. The 
right wall serves as an inlet boundary for an infinite-strength shock. We choose the 
initial densities of the fragmented metal disc and of the gas, which together with the 
Eulerian zone size, determine the total mass initially in every cell. We also set the 
pressures and the specific internal energies to their prescribed values everywhere in 
the interior. To initiate a problem, we select a rate uZR at which the particles are to be 
fluxed in through the right boundary. The pressure, density, and specific internal 
energy in the right boundary cell are then determined by the Rankine-Hugoniot 
equations [5]. 

In addition to initializing the field variables, we must arrange the initial particle 
distribution in a manner consistent with the prescribed fluid properties. The mass m, 
of every particle of a given material, wherever it appears in the system, is the same as 
the mass of every other particle of that same material. This mass is given by 

m, = p;WN,, (8) 

where pi is the initial density in a region with particle density N,, and 6x is the 
Eulerian cell dimension. We define an initial particle spacing for each region shown 
in Fig. 3 by dividing the Eulerian cell dimension by the initial particle density of the 
appropriate material. The particle coordinates are initialized by uniformly distributing 
the mass within each phase throughout the appropriate material regions of the 
Eulerian mesh. The number of particles that must be held in reserve to feed the input 
shock at the right-hand boundary is 

N 
R 

= lu,,lT&~~ 

6X Pit 
23 

where N, is the number of particles held in reserve, T, is the total projected time over 
which the particles are to be injected, and piR/pic is the ratio of densities behind and 
in front of the input shock. 

The initial conditions are not limited to the circumstances described by the above 
example; any other set of pure or mixed regions can be created, with whatever degree 
of inhomogeneity desired. 

In phase 1 of the calculations we advance the field variables as if both the particles 
and the cells follow the fluid motion. Left superscripts count the time cycle. The new 
cell volumes P, are calculated from the old volume 6x by 
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and 

Fzj = 6X - (nU2j_ L/2 - nU*j+ ,/2) dt. 

The artificial viscous pressure is 

and 

q2j = - $$$ tnU2j+ 112 - nU2j- l/Z)* 

(10) 

(11) 

If any qlj is calculated less than zero we set it equal to zero. To obtain new velocities 
at this stage, we solve the two equations of momentum simultaneously. To simplify 
the mathematical expressions, we define “bar” velocities by writing 

Uljt1/2 = n"lj+ l/2 + 
tnelj + neljtl> at (np, _ np, 

2"ii;ilj+ l/2 
J J+l 

) 

+ n~ftl,2 tnqlj - 'qljt 119 

u2jt1/2 = nU2j+ l/2 + 
Cne2j + "e2jt 1) & (np, _ np 

2nM2j+ l/2 
J it I 

) 

6t 
+ ““2j+ l/2 

(“92j - ‘qZj+ 1). 

(12) 

If “Mu+ i/2 = 0, then we set Uljt ,,2 = 0. We calculate the drag function according to 

Kjt1/2 = 
3cD ““2jt 112 n 

16r, 6x ( elj + nelj+ I> I n”lj+ l/2 - ““2j+ 1/Z/ + lo-‘* (13) 

The small artificial addition lo-’ to the expression for K is present to prevent the 
occurrence of indetinites in the solution for the velocities when the edge mass 
nM2j+ ,,2 is zero. 

We now introduce “tilde” velocities (Clzj+ ,,2), w  ic must be modified in the next h h 
phase of the calculational cycle to take particle transport into account. They are 
therefore not the final updated velocities. These “tilde” velocities are given by the 
simultaneous solution of the two momentum equations, 

ulj+1J2 = Uljt 112 
Kj t 112 6xiSt 

+ aljt l/2 
(;Zj+ l/2 - ;lj+ l/2) 
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and 

m K 
‘2i+ l/2 = u2j+ l/2 

+ A2jt l/2 
j+ "26xdt (C,j+ 112 - u”zj+ 112). 

The solution of these equations is 

and 

u2j+ l/2= 
“Mlj+ 1/2”Mzj+ 112 %j+ 112 +Kj+ ,/2dxSt(“Mlj+ l/2 a,j+ 112 + “li;i,+ 1/2~2j+ 112) 

"Mlj+ 1/2"m2j+ 112 +Kj+ ,/2~x~t("~lj+ l/2 + "&j+ 112) 
*(14) 

We perform an iteration to obtain the new locally equilibrated pressures. Using 
volume conservation and the equations of state, we solve the following three 
equations to obtain a first guess for equilibrium pressure and volume fractions. With 
a, = 0 (no “stiffening” in the gas) we have 

pj=af (2 -P,, ) + (71 - l)KI;j, “;; 

pj= (y2 - 1,+1;1, 
21 

and 

Blj + ev = 1. 

r,j is an approximation to the new specific internal energy that is subsequently 
modified to take into account dissipation and conduction. The solution of these 
equations represents a first guess because the internal energies do not include the 
compressional work that is associated with the changes in volume calculated in this 
phase. The new values of f,j and ‘;i are then calculated from the new pressures and 
volume fractions, 

r,j = Vlj - ( 

"9lj 
'+I,,+- 

” 
1 

""lj 
(Py”+‘elj- 6x “s,j) 

and 

rzj = “I, - 
( 

"92j n+lPj+TTij-, ) 

n"2j 
2J Cp2j It+ ‘e2j - 6x “e2j). (15) 
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If “M,, or “M, is zero we set the corresponding f equal to zero. With these values of 
f we repeat the whole equilibration. By examining a set of trial calculations, we have 
found that five repetitions produce satisfactory accuracy. 

The final calculation in phase 1 is the inclusion of the drag-function dissipation in 
the specific internal energies. To derive an expression for the dissipation, we rewrite 
the momentum equations in the form 

and 

“ii? l/t 1/2(clj+ l/2 - klj+ 1/F!) = Kjt */26xXBt(c*j+ I/2 - U;j+ 112) 

“fi,+ l/2(&j+ 112 - Qt ~2) = Kjt 1/2aXWc*jt 112 - c2jt I/Z)* (16) 

Multiplying the first equation by ~(u”,j+1,2 + Grit ,,2), the second by $(C,+ ,,2 + 
I,, ,,2), adding, and rearranging, we obtain the change in kinetic energy, 6KE,2, that 
results from a coupling of the two fields. In expanding the expression we neglect 
terms of order (at)‘, with the result 

6KE,2 = -Kit 1/2dXaf(c2j+ 1/2 - c,j+ l/2)2. (17) 

The change in specific internal energy 61j+,,2 that results from this dissipation of 
kinetic energy is 

%I/2 = 
-dKE,, 

n&j 
IJ t l/2 + "fi2j+ l/2 * 

(18) 

We add this amount to the “tilde” specific internal energies, hj and Jj+ I (1= 1, 2). 
In phase 2 we calculate the convective contributions to the equations. We begin by 

calculating the total momentum in the edge zones and the total internal energy in the 
cell-centered zones. 

nyljt l/2 = nAlj+ 112 ;lj+ l/29 

nF2j+ I/2nM2j+ l/2 ;2jt l/23 

"E,, = M,,&,. 

and 

"E, = h~$~l;i (19) 

To move the particles we first must locate them in the Eulerian mesh. We define an 
index “j, that corresponds to the cell in which the particle is located at the end of the 
previous computational cycle. For material 1 we have 

“j, = 2 + Integer nXli ( 1 -. 6x (20) 
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We now determine the location of its Eulerian interfaces. 

xj,=(“j,- 1)Sx 

and 

XjL = XjR - 6X, (21) 

where the right interface of “j, is xjR and the left interface is xjL. Similarly, we define 
an integer number “j, that identifies each zone centered on a cell interface. 

nje=*nteger (P++). (22) 

Using a linear interpolation for the particle velocity we calculate a new location for 
the particle. To simplify the notation we replace “j, with c. 

The quantity ‘+‘xli is the new particle location for the current computational cycle. 
Using Eqs. 20 and 22 we update j, and j, to determine if any cell boundaries have 
been traversed. 

If n+ 7, does not equal “j,, the particle has crossed from one cell-centered zone to 
another. Appropriate adjustments are made in the internal energy and mass of the 
associated zones. If n+ ‘j, does not equal “j, the particle has crossed an edge zone, so 
we adjust the momenta and edge masses. In addition, we modify the internal energy 
of the appropriate cell-centered zones to allow for the resulting dissipation. To treat 
the change in internal energy correctly we must relate the edge boundary crossed by 
the particle to the cell-centered zone containing that boundary. 

The dissipation for this process can be investigated by a detailed examination of 
the loss of kinetic energy, which is of the following form for particles of material I 

6KE = - 2- *I n"lj+w ($lj+3,2 - ;,j+,,2)2. 
2 *l + Rlj+ 3/2 

(24) 

The above expression is negative definite as it must be. The dissipation term is 

&s,=-d~E. (25) 

We partition this energy equally between the calculational cell and the neighboring 
cell if the latter has non-zero mass; othewise it is added only to the computational 
cell. The edge masses are treated in the same manner as the cell-centered masses. 
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We calculate the new location of each reserve particle by 

n+ *x*i = nXZi + u,, 6t. (26) 

If the particle has crossed the mesh boundary, we make appropriate modifications in 
particle numbers, total internal energy and cell- and edge-centered mass. 

In the final stage of the phase 2 calculation, we use our newly determined 
momenta, internal energies, cell-centered masses, and edge masses to obtain updated 
velocities and specific internal energies. If the edge mass of 1 is nonzero for a 
particular zone, we calculate the velocity by 

n+‘U ‘ij + l/2 
/J+ l/2 = n+ lfi,j+ ,,2 ’ 

If one material is absent from an edge zone, we set the velocity of that material equal 
to the velocity of the other material. 

To obtain the specific internal energies we divide the total internal energy of a cell- 
centered zone by its total mass. 

6’8) 

If no mass of 1 is present in a zone, we set the specific internal energy of that material 
to zero. At this point the specific internal energies are not final for this computational 
cycle, so we continue to designate them as “tilde” quantities. 

In phase 3 we calculate the contribution of the heat diffusion term to the specific 
internal energies. The difference form of the second-order partial derivative in the 
heat diffusion term uses the lesser of the two cell-centered masses adjacent to the 
interface under consideration, thus avoiding excessive flux to or from a cell with 
small mass. We refer to these masses as M,, and M,,. The new specific internal 
energies are given by 

* + ‘I, = l;i + rrst 
” + ‘M&3x)’ [M,R(~jt~-I;j)-M~~<I;,-J;--1)1. (29) 

If “+‘Mlj equals zero we set ‘+‘I, equal to zero. With the three phases of the 
computational cycle complete, we recalculate pressures and volume fractions based 
on the new specific internal energies. 
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IV. NUMERICAL ACCURACY 

Although the accuracy of the calculations is very difficult to demonstrate in 
general, we have used two tests to indicate whether the results represent reliable 
solutions of the differential equations. One test is the calculation of a selected 
problem with three different degrees of resolution. The configuration used in this 
comparison is the one described in Section I, a fragmented metal disc with gas 
regions on the leading and trailing edges. In the calculation we used 300, 90 and 30 
cells for the line, intermediate, and coarse meshes, respectively. The results shown in 
Fig. 5 indicate relatively little difference among the three calculations, although there 
is increased sharpness of the interfaces with finer resolution. The second test, 
discussed below, is a study of the propagation of weak signals through an initially 
mixed region. 

Coarse mesh ---- 

Intermediate mesh -.-.-.- 

Fine mesh 

FIG. 5. Effect of zone size: PICM predictions at a selected time of pressure, p; of the macroscopic 
densities, p’, and pi, in the fragmented metal and in the gas, respectively; and of the specific internal 
energy, I, and I,, in the fragmented metal and in the gas, respectively. 
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V. SOUND SPEED IN A MIXTURE 

According to the classical theory given by Wood [7], a low-amplitude signal 
propagates through a mixture of strongly coupled materials with a speed given by the 
following equation. 

C:C:P,P* 
c2 = LOI a2 + 02 %I [4P1+ 021 

(30) 

in which C, and C, are the pure-material sound speeds for the two components of the 
mixture. We consider first the case in which the ratio of the microscopic densities 
between the two materials is 11 to 1, with a set of material properties and initial 
conditions as given in Tables I and II, for which C, = 1.03 and C, = 1.29. The 
mixture sound speed computed by the above equation is C = 0.74. To directly proof- 
test the numerical method for this type of example requires computer calculations for 
the propagation of a very weak disturbance through the mixture. It has been 
demonstrated previously, however, that PIC calculations [8] can develop severe fluc- 
tuations when the Mach number of the flow is much smaller than 1. To test the 
numerical methodology we have performed a series of calculations, each with a 
weaker disturbance impressed onto the fluid mixture, and have extrapolated the 
results for comparison with the low-amplitude limit. 

The configuration for the calculations is summarized in Tables 11 and III and 
consists of regions A and B, of which A contains the mixture and B the pure gas. In 
the pure gas we initiate a shock for each calculation, the strength of which is charac- 

TABLE I 

Material Properties 

TABLE II 

Initial Conditions 

Region Pij Pij I,j Pj 

A 8.25 0.25 0.75 025 0.0 1.5 1.0 0.0 0.0 
B 0.0 1.0 0.0 1.0 0.0 1.5 1.0 0.0 0.0 
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TABLE III 

Calculation Mesh 

Mach No. 

2.0 I .o 0.1 16 30 16 8 0.2 0.2 0.2 0.2 
1.5 1.0 0.1 16 30 16 8 0.2 0.2 0.2 0.2 
1.1 0.33 0.033 46 90 64 32 0.06 0.06 0.06 0.06 

TABLE IV 

Boundary Conditions 

Mach No. Pi,+ 2 PiJ+ 2 

2.0 0.0 2.286 0.0 3.117 4.750 0.0 -1.452 
1.5 0.0 1.174 0.0 2.242 2.562 0.0 -0.807 

1.1 0.0 1.150 0.0 1.647 1.263 0.0 -0.185 

terized by the Mach number, M, defined as the ratio of the shock speed to the sound 
speed in the undisturbed gas of region B. In Table IV we indicate the boundary 
conditions supplied to the right side of the system. 

In each case we measure the transit time of the signal across A. For M = 2.0, a 
relatively coarse computational mesh produces sufficient resolution of the transmitted 
signal. In this case, a coarse mesh means 15 cells across the mixture region and 
particle densities of 16 and 8 for materials 1 and 2, respectively. We find that the 
calculation with A4 = 1.1 requires a finer mesh and higher particle densities to reduce 
the computational fluctuations associated with the “perturbed stagnation” of the 
materials, a difftculty that has always required special treatment in PIC-based 
methodologies. This calculation requires 45 cells across the mixture region and 
particle densities of 64 and 32 per cell for materials 1 and 2, respectively. The 
calculation with M = 1.5 also has computational fluctuations, albeit to a lesser 
degree. A plot of the three signal speeds is shown as a function of M in Fig. 6 
together with the theoretical result for a weak signal (M = 0). The extrapolated result 
agrees closely with theory. 

As a more stringent test, we have performed a similar set of calculations using a 
density ratio of 100 to 1. The pure-material sound speeds of the metal and the gas are 
C, and C, = 1, respectively. In this case, the mixture sound speed has the theoretical 
value C = 0.2, which is one-fifth of the sound speed in either material by itself. Again 
the extrapolation of the calculated results to M = 0 agrees closely with theory, as 
shown in Fig. 7. 
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0 

0.6 

X Theory 

0 Calculation 

1.0 I.1 1.2 1.3 1.4 I.5 I.6 I.7 I.6 I.9 2.0 2.1 2.2 2.3 

Mach No. 

FIG. 6. Signal speed as a function of Mach number. 

0 

0.3 

0.2 

X Theory 
0 Cclculation 

I.0 1.2 1.4 1.6 I.8 2.0 22 
Mach No. 

FIG. 7. Signal speed as a function of Mach number. 

VI. CONCLUSIONS 

We have developed a modified version of the PIC method by which the relative 
dynamics of a fragmented metal and a shocked gas can be calculated with both 
accuracy and efficiency. Test calculations show that the numerical procedure is 
capable of maintaining a sharp interface for circumstances that should be stable, and 
of allowing interpenetration for unstable interfaces. Additional tests demonstrate the 
capability for accurate calculation of sound signal propagation through a two-phase 
mixture. The principal application of the technique, described elsewhere [ 11, has been 
to investigate the shock compression of several interpenetrating materials, for which 
the numerical methodology succeeds even for high-density ratios. 
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